MATLAB | Python (Numpy) |
---|---|
Matrix Summary | |
sum(A) #veritical 1xn |
A.sum(0) #1D array(n) |
sum(A,2) #horizontal mx1 |
A.sum(1) #1D array(m) |
sum(sum(A)) #total |
A.sum() |
max(A) #1xn |
A.max(0) #(n) |
max(A, [], 2) #mx1 |
A.max(1) #(m) |
max(max(A)) |
A.max() |
Shuffle Data | |
X(randperm(m), :) |
np.random.permutation(A) |
Plot Graph | |
- | import matplotlib.pyplot as plt |
fugure(1) |
plt.figure(1) |
r=randn(5000,1) |
r=np.randn(5000) |
hist(r, 100) |
plt.hist(r, 100) |
figure(2) |
plt.figure(2) |
t=[0: 0.01: 0.98] |
t=arange(0, 0.99, 0.01) |
y1=sin(2*pi*t) |
y1=np.sin(2*np.pi*t) |
plot(t, y1) |
plt.plot(t, y1) |
hold no |
#no need plt.clf() #clear |
plot(t, y2, 'r') |
plt.plot(t, y2, 'r') |
xlabel('time') |
plt.xlabel('time') |
ylabel('value') |
plt.ylabel('value') |
legend('sin', 'cos') |
plt.legend(('sin', 'cos')) |
title('my plot') |
plt.tittle('my plot') |
close all |
plt.close('all') |
Flow Control | |
v=zero(10, 1) |
v=np.zeros(10) |
for i=1:2:10, #skip 2 |
for i in range(0,m,2): |
..v(i) = 2^i; |
..v[i] = 2 ** i |
end; |
|
i=1; |
i=0 |
while i<=5, |
while i<5: |
..v(i) = 100; |
..v[i] = 100 |
..i = i+1; |
..i = i+1 |
end; |
|
v(1)=2; |
v[0]=2 |
if v(1)==1, |
if v[0]==1: |
..disp('The value is one'); |
..print 'The value is one' |
elseif v(1)==2, |
elif v[0]==2: |
..disp('The value is two'); |
..print 'The value is two' |
else, |
else: |
..disp('The value is others'); |
..print 'The value is others' |
end; |
Thursday, June 16, 2016
MATLAB vs Python Syntax (II)
Subscribe to:
Post Comments (Atom)
Principle Component Analysis
Principle Component Analysis Eigenvector Decomposition Let A ∈ R n × n A \in \R^{n \times n} A ∈ R n × n be an n by n...
-
Policy Based Reinforcement Learning (I) Pre-requisites Unsupervised Learning Value Based Reinforcement Learning Ba...
No comments:
Post a Comment